

updated 9/24/24

<u>Unit</u>	<u>Topics</u>	<u>Time Frame</u>	<u>Standards</u>
Preparatory Skills and Practices	 Experiments and Variables Proportional Reasoning Using Graphs (Intercepts and Slopes) Visualizing Relationships (Graphical Relationships) 	6 periods	HS-PS2-1
Describing Motion (Kinematics)	 Describing Motion with Words Describing Motion with Diagrams Position vs. Time Graphs Velocity vs. Time Graphs Free-Fall and Acceleration due to Gravity Describing Motion with Equations 	25 periods	HS-PS2-1
Newton's Laws	 Newton's First Law Force and its Representation Newton's Second Law Newton's Third Law 	25 periods	HS-PS2-1
Work and Energy	 Basic Terminology and Concepts The Work-Energy Relationship 	15 periods	HS-PS3-1, HS-PS3-2,
Momentum	 The Impulse-Momentum Change Theorem The Law of Momentum Conservation 	15 periods	HS-PS2-1, HS-PS2-3
UCM and Gravitation	 Motion Characteristics for Circular Motion Applications of Circular Motion Universal Gravitation 	13 periods	HS-PS2-1, HS-PS2-4
Waves	 Vibrations The Nature of a Wave Properties of a Wave Behavior of Waves Standing Waves 	23 periods	HS-PS4-1
Electricity	 Electrical Variables Electrical Laws Electric Circuits 	20 periods	HS-PS2-5,

Preliminary Unit Summary: Physics Skills and Practices

The study of physics involves understanding the relationships between physical quantities. The laws of physics are governed by many equations that explain why objects and systems behave the way they do. Physicists conduct controlled experiments in order to determine whether physical quantities are dependent on one another. Devising an experiment in which only two variables will be involved is a paramount skill in physics. Once an experiment is properly performed, data must be analyzed. Graphing is an essential skill when trying to determine whether variables are related and, if they are, specifically how they are related. Students will examine some of the more basic relationships in this course: direct (linear), inverse, square (quadratic), square root, and inverse square. In this unit, students will design experiments when presented with a scientific question, conduct the experiment, and use a graph to determine the relationship between tested variables.

This unit will be broken into four major topics. Each lesson will be supplemented with various activities and labs that will be selected by the individual instructor.

- 1. Experiments and Variables
- 2. Proportional Reasoning
- 3. Using Graphs (Slope and Intercepts)
- 4. Visualizing Relationships

Essential Questions:			
What are independent and dependent variables?			
How can data be interpreted and analyzed?			
How do you determine the slope of a line?			
What is the meaning of the slope of a line?			
Vocabulary/Key Terms			
Tier 2 Vocabulary High-frequency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit		
independent, dependent, analyze, data	variable, slope, intercept		
Evidence of Learning:			

Summative/Performance Assessments (Tests/Projects = 40%)

• Physics Skills and Practices Assessment

Quizzes (20%)

Individual brief quizzes are provided in the lesson folder for each specific topic. Teachers can also use their own quizzes to assess for deeper or more specific understanding

Labs (30%)

Lab work will involve data collection using traditional data collection methods, sensor collection, video analysis, and/or simulation based material. Classes should conduct *at least one lab* in which real-life equipment is utilized. Example labs can be found in this folder (more labs will be added to this folder as they are created).

- Circumference and Diameter of a Cylinder Lab
- Mass and Volume of a Liquid Lab
- The Cost of Gasoline Lab

Practice (Homework/Classwork = 10%)

Classwork will involve questioning techniques utilizing a variety of strategies. Student learning will be monitored using responder systems, whiteboard responses, and student polling. The usage of Concept Builders will be used for students and instructors to gauge student performance on conceptual tasks. Students will be provided with a unit packet, which will be modified over time to help work with conceptual examples. Other materials that can be used include, but are not limited to:

- Pivot Interactives
- Desmos Graphing Activities
- Physics Interactives
- Physics Aviary Tasks

Formative Assessments:

Student progress will be assessed on a daily basis through *Objective Checkpoint* questions embedded in the lesson presentations. Concept Builders will be used at the conclusion of lessons (as homework or classwork) to check for individual student mastery. Small quizzes should be administered after every lesson or couple of lessons.

Resources

Content and structure of this course is based on the material as presented by The Physics Classroom.

Science Recommended Accommodations & Modifications for Curriculum Implementation General Classes

Special Education 504 Students <u>ML Students</u> At Risk Students Gifted and Talented

STANDARDS for Learning Targets			
NJSLS Science	Cross curricular	CTE(<u>NJSLS 9</u>) Technology(<u>NJSLS8</u>)	
HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration	ELA Standards RI.MF.9-10.6: Analyze, integrate, and evaluate multiple interpretations (e.g., charts, graphs, diagrams, videos) of a single text or texts presented in different formats (visually, quantitatively) as well as in words in order to address a question or solve a problem.	 CTE Standards 9.3.ST.2: Use technology to acquire, manipulate, analyze and report data. 9.3.ST.6: Demonstrate technical skills needed in a chosen STEM field. 	
	SL.PI.9-10.4: Present intormation, findings, and supporting		

evidence clearly, concisely, and logically. The content, organization, development, and style are appropriate to task, purpose, and audience.

SL.UM.9–10.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance findings, reasoning, and evidence and to add interest.

L.KL.9–10.2: Apply knowledge of language to make effective choices for meaning, or style, and to comprehend more fully when reading, writing, speaking or listening.

Mathematics Standards

Standard: Creating Equations

A.CED.A.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions

A.CED.A.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A.CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.

Standard: Making Inferences and Justifying Conclusions

S.IC.B.6: Evaluate reports based on data (e.g. interrogate study design, data sources, randomization, the way the data are analyzed and displayed, inferences drawn and methods used; identify and explain misleading uses of data; recognize when arguments based on data are flawed).

Standard: Interpreting Categorical and Quantitative Data

S.ID.A.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).

S.ID.B.6A: Fit a function to the data (including with the use of technology); use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.

S.ID.B.6B: Informally assess the fit of a function by plotting and analyzing residuals, including with the use of technology.

9.3.ST-ET.1: Use STEM concepts and processes to solve problems involving design and/or production.

9.3.ST-ET.2: Display and communicate STEM information.

9.3.ST-ET.3: Apply processes and concepts for the use of technological tools in STEM

9.3.ST-ET.5: Apply the knowledge learned in STEM to solve problems.

9.3.ST-SM.1: Apply science and mathematics to provide results, answers and algorithms for engineering and technological activities.

9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.

Technology

8.1.12.DA.1: Create interactive data visualizations using software tools to help others better

understand real world phenomena, including climate change.

8.1.12.DA.5: Create data visualizations from large data sets to summarize, communicate, and support different interpretations of real-world phenomena.

Sample Measurable Objectives for Lesson Planning

Identify the independent and dependent variables from a given scientific purpose

Devise a procedure that will best address a scientific purpose

Select the best representation of a graph that will be used to address a scientific purpose

Identify quantities from a data set that follow a pattern of proportionality

Identify a proportionality from a data set and predict a value outside of the data range

Use a digital application (Demos, Excel, Graphing Calculator) to determine the type of proportionality between tested variables

Determine the slope (including the units) of a best-fit line

Quantitatively explain the meaning of the slope of proportional graph in terms of the independent and dependent variables

Determine which data representation (table, words, equation, or graph) are unlike from a list of three or four possible representations

Unit 1 Summary: Describing Motion

Kinematics is a branch of physics that describes **how** objects move. How something moves can be expressed as words, measurements, diagrams, equations, and/or graphs. These descriptions can be scalar (size only) or vector (size and direction) in nature. In this unit, students will learn the major kinematics terms (distance, displacement, speed, velocity, and acceleration) and how they are used to describe the motion of an object. This unit will emphasize the importance of using motion diagrams, graphical analysis, and equations to describe and predict the motion of an object. Students will use a combination of student inquiry, data collection, simulation work, and video analysis to strengthen their conceptual understanding of these terms as they pertain to motion.

This unit will be broken into six major topics with varying numbers of subtopics. Each lesson will be supplemented with various activities and labs that will be selected by the individual instructor. The links below will take the user to a folder that consists of presentations, worksheets, formative questions, and section quizzes for each major unit section.

- 1. Describing Motion with Words
- 2. Describing Motion with Diagrams
- 3. Describing Motion with Position-Time Graphs
- 4. Describing Motion with Velocity-Time Graphs
- 5. Free Fall and Acceleration Due to Gravity
- 6. Describing Motion with Equations

Essential Questions:

How do scalar measurements differ from vector measurements? Which aspects of an object's motion can be described using a motion diagram? Which aspects of an object's motion can be described using a position-time graph? Which aspects of an object's motion can be described using a velocity-time graph? How are kinematics equations and graphs used to describe an object's motion in free-fall?

Vocabulary/Key Terms			
Tier 2 Vocabulary High-frequency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit		
distance, magnitude, direction, position, speed, vector, scalar	displacement, velocity, acceleration		

Evidence of Learning:

Summative/Performance Assessments (Tests/Projects = 40%)

- Kinematics: Terms and Diagrams
- Kinematics: Graphical Analysis
- Kinematics: Freefall and Mathematical Analysis

Quizzes (20%)

Individual brief quizzes are provided in the lesson folder for each specific topic. Teachers can also use their own quizzes to assess for deeper or more specific understanding

Labs (30%)

Lab work will involve data collection using traditional data collection methods, sensor collection, video analysis, and/or simulation based material. Classes should conduct *at least three labs* in which real-life equipment is utilized. More labs will be added to this folder as they are created.

- Labs for Topic 1: Describing Motion with Words
- Labs for Topic 2: Describing Motion with Diagrams
- Labs for Topic 3: Describing Motion with Position-Time Graphs
- Labs for Topic 4: Describing Motion with Velocity-Time Graphs
- Labs for Topic 5: Free Fall and Acceleration Due to Gravity
- Labs for Topic 6: Describing Motion with Equations

Practice (Homework/Classwork = 10%)

Classwork will involve questioning techniques utilizing a variety of strategies. Student learning will be monitored using responder systems, whiteboard responses, and student polling. The usage of Concept Builders will be used for students and instructors to gauge student performance on conceptual tasks. Practice examples will be based on a workbook provided by the Physics Classroom. Other materials that can be used include, but are not limited to:

- Pivot Interactives
- Desmos Graphing Activities
- Physics Interactives
- Physics Aviary Tasks

Formative Assessments:

Student progress will be assessed on a daily basis through *Objective Checkpoint* questions embedded in the lesson presentations. Concept Builders will be used at the conclusion of lessons (as homework or classwork) to check for individual student mastery. Small quizzes should be administered after every lesson or couple of lessons.

Resources

Content and structure of this course is based on the material as presented by The Physics Classroom.

Science Recommended Accommodations & Modifications for Curriculum Implementation			
General Classes			
Special Education			
504 Students			
ML Students			
At Risk Students			
Gifted and Talented			

STANDARDS for Learning Targets			
NJSLS Science	Cross curricular	CTE (NJSLS 9) Technology (NJSLS)	
HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration	ELA Standards RI.MF.9-10.6: Analyze, integrate, and evaluate multiple interpretations (e.g., charts, graphs, diagrams, videos) of a single text or texts presented in different formats (visually, quantitatively) as well as in words in order to address a question or solve a problem.	 CTE Standards 9.3.ST.2: Use technology to acquire, manipulate, analyze and report data. 9.3.ST.6: Demonstrate technical skills needed in a chosen STEM field. 	
	SL.PI.9–10.4 : Present information, findings, and supporting evidence clearly, concisely, and logically. The content, organization, development, and style are appropriate to task, purpose, and audience.	9.3.ST-ET.1: Use STEM concepts and processes to solve problems involving design and/or production.	
	SL.UM.9–10.5 : Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in	9.3.ST-ET.2: Display and communicate STEM information.	
	presentations to enhance findings, reasoning, and evidence and to add interest	technological tools in STEM	
	L.KL.9–10.2: Apply knowledge of language to make effective choices for meaning, or style, and to comprehend more fully when reading, writing, speaking or listening.	9.3.ST-ET.5: Apply the knowledge learned in STEM to solve problems.	
	Mathematics Standards	9.3.ST-SM.1: Apply science and mathematics to provide	
	Standard: Creating Equations A.CED.A.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from	results, answers and algorithms for engineering and technological activities.	
	linear and quadratic functions, and simple rational and exponential functions	9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address	
	A.CED.A.2: Create equations in two or more variables to represent relationships between quantities; graph equations on	real world problems.	
	coordinate axes with labels and scales.	8.1.12.DA.1: Create interactive data visualizations using	
		software tools to help others better	
		understand real world phenomena, including climate change.	

Back to top

A.CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.

Standard: Making Inferences and Justifying Conclusions

S.IC.B.6: Evaluate reports based on data (e.g. interrogate study design, data sources, randomization, the way the data are analyzed and displayed, inferences drawn and methods used; identify and explain misleading uses of data; recognize when arguments based on data are flawed).

Standard: Interpreting Categorical and Quantitative Data S.ID.A.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).

S.ID.B.6A: Fit a function to the data (including with the use of technology); use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.

S.ID.B.6B: Informally assess the fit of a function by plotting and analyzing residuals, including with the use of technology.

S.ID.B.6C: Fit a linear function for a scatter plot that suggests a linear association.

S.ID.C.7: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

Standard: Interpreting Functions

F.IF.C.7A: Graph linear and quadratic functions and show intercepts, maxima, and minima.

Standard: Linear and Exponential Models

F.LE.A.1B: Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

F.LE.A.1C: Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

F.LE.A.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

F.LE.B.5: Interpret the parameters in a linear or exponential function in terms of a context.

8.1.12.DA.5: Create data visualizations from large data sets to summarize, communicate, and support different interpretations of real-world phenomena.

Standard: Quantities

N.Q.A.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays

Sample Measurable Objectives for Lesson Planning		
Determine whether a mathematically described quantity is scalar or vector		
Determine the distance traveled and displacement of an object		
Determine the average speed and/or velocity of a moving object for a given time interval		
Determine whether an object is accelerating		
Determine the size and direction of an object's acceleration from motion data		
Construct a diagram to accurately depict motion		
Use a motion diagram to describe how an object is moving (direction, type, and relative size)		
Use a vector diagram to determine whether an object is accelerating		
Use a vector diagram to determine the direction of an object's acceleration		
Determine the direction of an object's motion from a position-time graph		
Determine whether an object is at rest, constant velocity, or accelerating from a position-time graph		
Calculate the velocity of a moving object from a position-time graph		
Determine the direction of an object's motion from a velocity-time graph		
Determine whether an object is at rest, constant velocity, or accelerating from a velocity-time graph		
Calculate the acceleration of a moving object from a velocity-time graph		
Determine the displacement of a moving object from a velocity-time graph		
Describe the characteristics of a true free-falling object		
Describe the acceleration due to gravity		
Describe the motion of free-falling objects using position-time and velocity-time graphs		
Determine the displacement and speed of a free-falling object based on the time it has been falling		
Explain that mass does not play a role in free fall		
Describe the effects of air resistance on free-falling objects		
Describe the motion of objects using equations		
Solve kinematics problems using appropriate equations		
Apply kinematics equations to objects in free fall		

Unit 2 Summary: Newton's Laws

Newton's Laws describe *why* an object is moving in a particular way. In this unit, students will learn the concept of force as a push or a pull and the major types of forces. This unit will examine in full detail each of Newton's Three laws of motion. These laws are commonly misunderstood and often lead to faulty conclusions in explaining the behavior (i.e. forces sustain motion) of an object or a system of objects. In order to fully understand why an object moves the way it does, students will learn how to select an object of interest, identify all external forces acting on that object, and construct a force diagram to represent the interactions that will lead to the changes in motion of the object. By the conclusion of this unit, students will be expected to be able to make qualitative and quantitative predictions about how an object will move as it interacts with its surroundings. Students will use a combination of student inquiry, data collection, simulation work, and video analysis in order to observe each of Newton's Laws in action in order to correct previous misconceptions and to learn how to use mechanics as a problem solving tool when studying advanced situations.

This unit will be broken into four major topics with varying numbers of subtopics. Each lesson will be supplemented with various activities and labs that will be selected by the individual instructor.

- 1. Newton's First Law of Motion
- 2. Force and its Representation
- 3. Newton's Second Law of Motion
- 4. Newton's Third Law of Motion

Essential Questions:

How does inertia relate to an object's motion? What is a force and how can it be represented in a diagram? Which aspects of an object's motion are related to force? How do Newton's laws explain the principles of force and motion?

Vocabulary/Key Terms			
Tier 2 Vocabulary High-frequency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit		
opposite, action, reaction, force, tension, normal, mass, weight, gravity	free-body diagram, inertia		

Evidence of Learning:

Summative/Performance Assessments (Tests/Projects = 40%)

- Newton's Laws: Inertia and Force Representations
- Newton's Laws: Second and Third Laws

Quizzes (20%)

Labs (30%)

Lab work will involve data collection using traditional data collection methods, sensor collection, video analysis, and/or simulation based material. Classes should conduct *at least three labs* in which real-life equipment is utilized. More labs will be added to this folder as they are created.

- Labs for Topic 1: Newton's First Law of Motion
- Labs for Topic 2: Force and its Representation
- Labs for Topic 3: Newton's Second Law of Motion
- Labs for Topic 4: Newton's Third Law of Motion

Practice (Homework/Classwork = 10%)

Classwork will involve questioning techniques utilizing a variety of strategies. Student learning will be monitored using responder systems, whiteboard responses, and student polling. The usage of Concept Builders will be used for students and instructors to gauge student performance on conceptual tasks. Students will be provided with a unit packet, which will be modified over time to help work with conceptual examples. Other materials that can be used include, but are not limited to:

- Pivot Interactives
- Desmos Graphing Activities
- Physics Interactives
- Physics Aviary Tasks

Formative Assessments:

Student progress will be assessed on a daily basis through *Objective Checkpoint* questions embedded in the lesson presentations. Concept Builders will be used at the conclusion of lessons (as homework or classwork) to check for individual student mastery. Small quizzes should be administered after every lesson or couple of lessons.

Resources

Content and structure of this course is based on the material as presented by The Physics Classroom.

Science Recommended Accommodations & Modifications for Curriculum Implementation

General Classes Special Education 504 Students ML Students At Risk Students Gifted and Talented

STANDARDS for Learning Targets			
NJSLS Science	Cross curricular	CTE (NJSLS 9) Technology (NJSLS)	
HS-PS2-1 : Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration	ELA Standards RI.MF.9–10.6: Analyze, integrate, and evaluate multiple interpretations (e.g., charts, graphs, diagrams, videos) of a single text or texts presented in different formats (visually, quantitatively) as well as in words in order to address a question or solve a	CTE Standards 9.3.ST.2: Use technology to acquire, manipulate, analyze and report data.	
	problem. SL.PI.9-10.4: Present information, findings, and supporting evidence	STEM field.	
	clearly, concisely, and logically. The content, organization, development, and style are appropriate to task, purpose, and audience.	9.3.ST-ET.1: Use STEM concepts and processes to solve problems involving design and/or production.	
	SL.UM.9–10.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance findings, reasoning, and evidence and to add interest	 9.3.ST-ET.2: Display and communicate STEM information. 9.3.ST-ET.3: Apply processes and concepts for the use of taskes leaders in STEM. 	
	L.KL.9-10.2: Apply knowledge of language to make effective choices for meaning, or style, and to comprehend more fully when reading, writing, speaking or listening.	9.3.ST-ET.5: Apply the knowledge learned in STEM to solve problems.	
	Mathematics Standards Standard: Creating Equations A.CED.A.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions	9.3.ST-SM.1: Apply science and mathematics to provide results, answers and algorithms for engineering and technological activities.	
	A.CED.A.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.	
	A.CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	Technology 8.1.12.DA.1: Create interactive data visualizations using software tools to help others better	
	Standard: Making Inferences and Justifying Conclusions S.IC.B.6: Evaluate reports based on data (e.g. interrogate study desian, data sources, randomization, the way the data are analyzed	change.	
	and displayed, inferences drawn and methods used; identify and explain misleading uses of data; recognize when arguments based on data are flawed).	8.1.12.DA.5 : Create data visualizations from large data sets to summarize, communicate, and support different interpretations of real-world phenomena.	
	Standard: Interpreting Categorical and Quantitative Data S.ID.A.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).		

S.ID.B.6A: Fit a function to the data (including with the use of technology); use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.
S.ID.B.6B: Informally assess the fit of a function by plotting and analyzing residuals, including with the use of technology.
S.ID.B.6C: Fit a linear function for a scatter plot that suggests a linear association.
S.ID.C.7: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
Standard: Interpreting Functions F.IF.C.7A: Graph linear and quadratic functions and show intercepts, maxima, and minima.
Standard: Linear and Exponential Models F.LE.A.1B: Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
F.LE.A.1C: Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F.LE.A.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
F.LE.B.5: Interpret the parameters in a linear or exponential function in terms of a context.
Standard: Quantities N.Q.A.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays

Sample Measurable Objectives for Lesson Planning

Predict the future motion of an object when provided with or without an unbalanced force

Use the concept of inertia to predict the motion of a light object compared to a heavy object

Predict whether an object will accelerate when provided with forces that are applied to it

List the individual forces acting on an object from a written description of the object's motion

Construct a free-body diagram for an object from a written description of the object's motion

Use a force diagram to determine the net force acting on an object

Use Newton's Second Law to calculate the acceleration of an object, given the object's mass and size of the net force

2024

Calculate an object's acceleration when multiple forces are acting upon it

Calculate individual forces acting on an object when provided with the object's mass and kinematic data

Calculate the acceleration of objects that fall in the air and compare them to objects that fall freely

Calculate the acceleration and/or individual forces acting on an object when multiple objects interact with each other

Describe Newton's Third Law of Motion

Identify action-reaction force pairs in an interaction between a group of objects

Unit 3 Summary: Work and Energy

In this unit, students will learn the concepts of work, mechanical energy, and power. Students will learn the different types of mechanical energy and to differentiate between open and closed systems. This unit will focus on students analyzing situations and determining if work was done and how energy was transferred. Students will use a combination of student inquiry, data collection, simulation work, and video analysis to strengthen their conceptual understanding of work and energy.

This unit will be broken into four major topics with varying numbers of subtopics. Each lesson will be supplemented with various activities and labs that will be selected by the individual instructor.

- 1. Basic Terminology and Concepts
- 2. The Work-Energy Relationship

Essential Questions: When is work done on an object? How are work and power related? What are the major forms of energy? What factors influence the potential and kinetic energy of an object? How is energy conserved when changing from one form to another? Vocabulary/Key Terms

Tier 2 Vocabulary High-frequency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit	
force, work, energy, power, mass, gravity, kinetic, potential, mechanical		
Evidence of Learning:		

Summative/Performance Assessments (Tests/Projects = 40%)

• Work and Energy

Quizzes (20%)

Labs (30%)

Lab work will involve data collection using traditional data collection methods, sensor collection, video analysis, and/or simulation based material. Classes should conduct *at least two labs* in which real-life equipment is utilized. More labs will be added to this folder as they are created.

- Labs for Topic 1: Basic Terminology and Concepts
- Labs for Topic 2: The Work-Energy Relationship

Practice (Homework/Classwork = 10%)

Classwork will involve questioning techniques utilizing a variety of strategies. Student learning will be monitored using responder systems, whiteboard responses, and student polling. The usage of Concept Builders will be used for students and instructors to gauge student performance on conceptual tasks. Students will be provided with a unit packet, which will be modified over time to help work with conceptual examples. Other materials that can be

used include, but are not limited to:

- Pivot Interactives
- Desmos Graphing Activities
- Physics Interactives
- Physics Aviary Tasks

Formative Assessments:

Student progress will be assessed on a daily basis through *Objective Checkpoint* questions embedded in the lesson presentations. Concept Builders will be used at the conclusion of lessons (as homework or classwork) to check for individual student mastery. Small quizzes should be administered after every lesson or couple of lessons.

Resources

Content and structure of this course is based on the material as presented by The Physics Classroom.

Science Recommended Accommodations & Modifications for Curriculum Implementation

General Classes Special Education 504 Students <u>ML Students</u> At Risk Students Gifted and Talented

STANDARDS for Learning Targets			
NJSLS Science	Cross curricular	CTE (NJSLS 9) Technology (NJSLS)	
HS-PS3-1 : Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.	ELA Standards RI.MF.9–10.6: Analyze, integrate, and evaluate multiple interpretations (e.g., charts, graphs, diagrams, videos) of a single text or texts presented in different formats	CTE Standards 9.3.ST.2: Use technology to acquire, manipulate, analyze and report data.	
HS-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).	(visually, quantitatively) as well as in words in order to address a question or solve a problem.	9.3.ST.6: Demonstrate technical skills needed in a chosen STEM field.	
	SL.PI.9–10.4: Present information, findings, and supporting evidence clearly, concisely, and logically. The content, organization, development, and style are appropriate to task, purpose, and audience.	9.3.ST-ET.1: Use STEM concepts and processes to solve problems involving design and/or production.	
	SL.UM.9-10.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance findings, reasoning, and	 9.3.ST-ET.2: Display and communicate STEM information. 9.3.ST-ET.3: Apply processes and concepts for the use of taskaplaging tasks in STEM. 	
	evidence and to add interest L.KL.9–10.2: Apply knowledge of language to make		

effective choices for meaning, or style, and to comprehend more fully when reading, writing, speaking or listening.

Mathematics Standards Standard: Creating Equations

A.CED.A.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions

A.CED.A.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A.CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.

Standard: Making Inferences and Justifying Conclusions

S.IC.B.6: Evaluate reports based on data (e.g. interrogate study design, data sources, randomization, the way the data are analyzed and displayed, inferences drawn and methods used; identify and explain misleading uses of data; recognize when arguments based on data are flawed).

Standard: Interpreting Categorical and Quantitative Data

S.ID.A.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).

S.ID.B.6A: Fit a function to the data (including with the use of technology); use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.

S.ID.B.6B: Informally assess the fit of a function by plotting and analyzing residuals, including with the use of technology.

S.ID.B.6C: Fit a linear function for a scatter plot that suggests a linear association.

S.ID.C.7: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

9.3.ST-ET.5: Apply the knowledge learned in STEM to solve problems.

9.3.ST-SM.1: Apply science and mathematics to provide results, answers and algorithms for engineering and technological activities.

9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.

Technology

8.1.12.DA.1: Create interactive data visualizations using software tools to help others better understand real world phenomena, including climate change.

8.1.12.DA.5: Create data visualizations from large data sets to summarize, communicate, and support different interpretations of real-world phenomena.

Sample Measurable Objectives for Lesson Planning		
k to top		

Unit 4 Summary: Momentum

In this unit, students will learn the concepts of impulse and momentum. Students will study interactions between objects when momentum changes and when momentum is conserved. Students will apply Newton's Laws to collisions and apply impulse and momentum concepts to real world situations. Students will use a combination of student inquiry, data collection, simulation work, and video analysis to strengthen their conceptual understanding of momentum and impulse.

This unit will be broken into four major topics with varying numbers of subtopics. Each lesson will be supplemented with various activities and labs that will be selected by the individual instructor.

- 1. <u>The Impulse-Momentum Change Theorem</u>
- 2. The Law of Momentum Conservation

Essential Questions:

What is momentum?

How can the momentum of an object be changed?

How does momentum change during collisions?

Does the law of conservation of momentum apply to explosions?

How can impulse and momentum be applied to everyday situations?

Vocabulary/Key Terms

Tier 2 VocabularyTier 3 VocabularyHigh-frequency words used throughout the unitDiscipline-specific words used throughout the unit

mass, velocity, momentum, impulse, conserve, collision

Evidence of Learning:

Summative/Performance Assessments (Tests/Projects = 40%)

• Momentum

Quizzes (20%)

Labs (30%)

Lab work will involve data collection using traditional data collection methods, sensor collection, video analysis, and/or simulation based material. Classes should conduct *at least two labs* in which real-life equipment is utilized. More labs will be added to this folder as they are created.

- Labs for Topic 1: The Impulse-Momentum Change Theorem
- Labs for Topic 2: The Law of Momentum Conservation

Practice (Homework/Classwork =10%)

Classwork will involve questioning techniques utilizing a variety of strategies. Student learning will be monitored using responder systems, whiteboard

responses, and student polling. The usage of Concept Builders will be used for students and instructors to gauge student performance on conceptual tasks. Students will be provided with a unit packet, which will be modified over time to help work with conceptual examples. Other materials that can be used include, but are not limited to:

- Pivot Interactives
- Desmos Graphing Activities
- Physics Interactives
- Physics Aviary Tasks

Formative Assessments:

Student progress will be assessed on a daily basis through *Objective Checkpoint* questions embedded in the lesson presentations. Concept Builders will be used at the conclusion of lessons (as homework or classwork) to check for individual student mastery. Small quizzes should be administered after every lesson or couple of lessons.

Resources

Science Recommended Accommodations & Modifications for Curriculum Implementation General Classes Special Education 504 Students <u>ML Students</u> At Risk Students Gifted and Talented

Content and structure of this course is based on the material as presented by The Physics Classroom.

	STANDARDS for Learning Targets	
NJSLS Science	Cross curricular	CTE (NJSLS 9) Technology (NJSLS)
HS-PS2-2 : Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.	ELA Standards RI.MF.9-10.6: Analyze, integrate, and evaluate multiple interpretations (e.g., charts, graphs, diagrams, videos) of a single text or texts presented in different formats (visually,	CTE Standards 9.3.ST.2: Use technology to acquire, manipulate, analyze and report data.
HS-PS2-3: Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.	quantitatively) as well as in words in order to address a question or solve a problem.	9.3.ST.6: Demonstrate technical skills needed in a chosen STEM field.
	SL.PI.9-10.4: Present information, findings, and supporting evidence clearly, concisely, and logically. The content, organization, development, and style are appropriate to task, purpose, and audience.	9.3.ST-ET.1: Use STEM concepts and processes to solve problems involving design and/or production.
	SL.UM.9–10.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance findings, reasoning, and evidence and	9.3.ST-ET.2: Display and communicate STEM information.

to add interest..

L.KL.9–10.2: Apply knowledge of language to make effective choices for meaning, or style, and to comprehend more fully when reading, writing, speaking or listening.

Mathematics Standards

Standard: Creating Equations

A.CED.A.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions

A.CED.A.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A.CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.

Standard: Making Inferences and Justifying Conclusions

S.IC.B.6: Evaluate reports based on data (e.g. interrogate study design, data sources, randomization, the way the data are analyzed and displayed, inferences drawn and methods used; identify and explain misleading uses of data; recognize when arguments based on data are flawed).

Standard: Interpreting Categorical and Quantitative Data

S.ID.A.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).

S.ID.B.6A: Fit a function to the data (including with the use of technology); use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.

S.ID.B.6B: Informally assess the fit of a function by plotting and analyzing residuals, including with the use of technology.

S.ID.B.6C: Fit a linear function for a scatter plot that suggests a linear association.

S.ID.C.7: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

Standard: Interpreting Functions F.IF.C.7A: Graph linear and quadratic functions and show intercepts, maxima, and minima. **9.3.ST-ET.3:** Apply processes and concepts for the use of technological tools in STEM

9.3.ST-ET.5: Apply the knowledge learned in STEM to solve problems.

9.3.ST-SM.1: Apply science and mathematics to provide results, answers and algorithms for engineering and technological activities.

9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.

Technology

8.1.12.DA.1: Create interactive data visualizations using software tools to help others better understand real world phenomena, including climate change.

8.1.12.DA.5: Create data visualizations from large data sets to summarize, communicate, and support different interpretations of real-world phenomena.

Sample Measurable Objectives for Lesson Planning		
Describe momentum as how difficult it is to bring an object to rest or "mass in motion"		
Calculate the momentum of an object		
Describe impulse in terms of momentum change and force		
Solve for missing variables using the impulse-momentum equation		
Apply impulse-momentum theorem to real world situations		
Apply Newton's Laws to collisions		
Explain that the total momentum of a closed system remains constant		
Calculate for missing variables using a momentum table		
Identify if a system is isolated		
Solve problems involving conservation of momentum		
Describe qualitatively the expected result of an interaction using momentum conservation		
Apply momentum conservation to explosions		

Unit 5 Summary: Uniform Circular Motion and Gravitation

In this unit, students will learn that the same concepts and principles that are used to describe linear motion can be used to describe the motion of an object moving in a circular path. In this unit, students will learn the major circular motion terms and how they are used to describe the motion of an object in a circular path. Students will use a combination of student inquiry, data collection, simulation work, and video analysis to strengthen their conceptual understanding of circular motion.

This unit will be broken into four major topics with varying numbers of subtopics. Each lesson will be supplemented with various activities and labs that will be selected by the individual instructor.

- 1. Motion Characteristics for Circular Motion
- 2. Applications of Circular Motion
- 3. Universal Gravitation

Essential Questions:		
What are the properties of an object moving in a circular path?		
How is uniform circulo	ar motion described?	
What force causes an object	to move in a circular path?	
What factors affect centripetal force?		
What is universal gravitation and what factors affect it?		
Vocabulary/Key Terms		
Tier 2 Vocabulary	Tier 3 Vocabulary	
High-frequency words used throughout the unit	Discipline-specific words used throughout the unit	
circular, force, acceleration, mass	centripetal	
Evidence of Learning:		
Summative/Performance Assessments (Tests/Projects = 40%)		

UCM and Gravitation Unit Test

Quizzes (20%)

Labs (30%)

LLab work will involve data collection using traditional data collection methods, sensor collection, video analysis, and/or simulation based material. Classes should conduct *at least one lab* in which real-life equipment is utilized. More labs will be added to this folder as they are created.

- Labs for Topic 1: Motion Characteristics for Circular Motion
- Labs for Topic 2: Applications of Circular Motion
- Labs for Topic 3: Universal Gravitation

Practice (Homework/Classwork = 10%)

Classwork will involve questioning techniques utilizing a variety of strategies. Student learning will be monitored using responder systems, whiteboard responses, and student polling. The usage of Concept Builders will be used for students and instructors to gauge student performance on conceptual tasks. Students will be provided with a unit packet, which will be modified over time to help work with conceptual examples. Other materials that can be used include, but are not limited to:

- Pivot Interactives
- Desmos Graphing Activities
- Physics Interactives
- Physics Aviary Tasks

Formative Assessments:

Student progress will be assessed on a daily basis through *Objective Checkpoint* questions embedded in the lesson presentations. Concept Builders will be used at the conclusion of lessons (as homework or classwork) to check for individual student mastery. Small quizzes should be administered after every lesson or couple of lessons.

Resources

Content and structure of this course is based on the material as presented by The Physics Classroom.

Science Recommended Accommodations & Modifications for Curriculum Implementation

General Classes Special Education 504 Students <u>ML Students</u> At Risk Students Gifted and Talented

STANDARDS for Learning Targets		
NJSLS Science	Cross curricular	CTE (NJSLS 9) Technology (NJSLS)
HS-PS2-1 : Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration	ELA Standards RI.MF.9-10.6: Analyze, integrate, and evaluate multiple interpretations (e.g., charts, graphs, diagrams, videos) of a single text or texts presented in different formats (visually,	CTE Standards 9.3.ST.2: Use technology to acquire, manipulate, analyze and report data.
HS-PS2-4 .: Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the	quantitatively) as well as in words in order to address a question or solve a problem.	9.3.ST.6: Demonstrate technical skills needed in a chosen STEM field.
gravitational and electrostatic forces between objects.	SL.PI.9-10.4: Present information, findings, and supporting evidence clearly, concisely, and logically. The content, organization, development, and style are appropriate to task, purpose, and audience.	9.3.ST-ET.1: Use STEM concepts and processes to solve problems involving design and/or production.
	SL.UM.9-10.5: Make strategic use of digital media (e.g., textual,	9.3.ST-ET.2: Display and communicate STEM information.

Back to top

2024

graphical, audio, visual, and interactive elements) in presentations to enhance findings, reasoning, and evidence and to add interest.

L.KL.9–10.2: Apply knowledge of language to make effective choices for meaning, or style, and to comprehend more fully when reading, writing, speaking or listening.

Mathematics Standards Standard: Creating Equations

A.CED.A.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions

A.CED.A.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A.CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.

Standard: Making Inferences and Justifying Conclusions

S.IC.B.6: Evaluate reports based on data (e.g. interrogate study design, data sources, randomization, the way the data are analyzed and displayed, inferences drawn and methods used; identify and explain misleading uses of data; recognize when arguments based on data are flawed).

Standard: Interpreting Categorical and Quantitative Data S.ID.A.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).

S.ID.B.6A: Fit a function to the data (including with the use of technology); use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.

S.ID.B.6B: Informally assess the fit of a function by plotting and analyzing residuals, including with the use of technology.

S.ID.B.6C: Fit a linear function for a scatter plot that suggests a linear association.

S.ID.C.7: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

Standard: Interpreting Functions

9.3.ST-ET.3: Apply processes and concepts for the use of technological tools in STEM

9.3.ST-ET.5: Apply the knowledge learned in STEM to solve problems.

9.3.ST-SM.1: Apply science and mathematics to provide results, answers and algorithms for engineering and technological activities.

9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.

Technology

8.1.12.DA.1: Create interactive data visualizations using software tools to help others better understand real world phenomena, including climate change.

8.1.12.DA.5: Create data visualizations from large data sets to summarize, communicate, and support different interpretations of real-world phenomena.

Sample Measurable Objectives for Lesson Planning

Describe the speed and velocity of an object moving in a uniform circular path

Explain why object moving in a circular path is always accelerating

Explain the presence of a centripetal force using Newton's Laws of motion

Determine if a force will cause an object's speed to change

Apply the law of inertia to disprove the presence of a "centrifugal force"

Solve for the speed, acceleration, and centripetal force of an object moving in a circular path

Use a free-body diagram to determine the centripetal force, acceleration and individual forces acting on an object

Analyze the forces acting on a rider at different positions on a roller coaster

Use force concepts to explain the feelings of weightlessness and heaviness during a roller coaster ride

Apply circular motion concepts to athletics

Describe the factors that affect the force of gravity

Use Newton's Law of Gravitation to solve for the gravitational force acting on an object

Describe the factors that affect gravitational field

<u>Unit 6 Summary: Waves</u>

In this unit, students will learn the properties of oscillating objects. Students will study the behavior of pendulums, springs, and waves. In this unit students will learn major terms associated with oscillatory motion (restoring force, amplitude, wavelength, frequency, and period) and use those terms to describe the motion of oscillating objects. Students will use a combination of student inquiry, data collection, simulation work, and video analysis to strengthen their conceptual understanding of these terms as they pertain to waves.

This unit will be broken into four major topics with varying numbers of subtopics. Each lesson will be supplemented with various activities and labs that will be selected by the individual instructor.

- 1. Vibrations
- 2. The Nature of a Wave
- 3. Properties of a Wave
- 4. Behavior of Waves
- 5. Standing Waves

Essential Questions: What are the properties of an object in vibrational motion? How do force and energy apply to vibrational motion? What factors affect the period of a vibrating object? What are the defining characteristics of wave motion? What are the properties of waves? How do waves interact with each other?		
What is a standing wave and how are they formed?		
vocabulary/key lerms		
Tier 2 Vocabulary High-frequency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit	
oscillation, spring, force, restoring, harmonic, wave, reflection, frequency, wavelenath	pendulum	

Evidence of Learning:

Summative/Performance Assessments (Tests/Projects = 40%)

- Waves: Vibrations and Wave Basics
- Waves: Behavior of Waves

Quizzes (20%)

Labs (30%)

Lab work will involve data collection using traditional data collection methods, sensor collection, video analysis, and/or simulation based material. Classes should conduct *at least two labs* in which real-life equipment is utilized. More labs will be added to this folder as they are created.

- Labs for Topic 1: Vibrations
- Labs for Topic 2: The Nature of a Wave
- Labs for Topic 3: Properties of a Wave
- Labs for Topic 4: Behavior of Waves
- Labs for Topic 5: Standing Waves

Practice (Homework/Classwork = 10%)

Classwork will involve questioning techniques utilizing a variety of strategies. Student learning will be monitored using responder systems, whiteboard responses, and student polling. The usage of Concept Builders will be used for students and instructors to gauge student performance on conceptual tasks. Students will be provided with a unit packet, which will be modified over time to help work with conceptual examples. Other materials that can be used include, but are not limited to:

- Pivot Interactives
- Desmos Graphing Activities
- Physics Interactives
- Physics Aviary Tasks

Formative Assessments:

Student progress will be assessed on a daily basis through *Objective Checkpoint* questions embedded in the lesson presentations. Concept Builders will be used at the conclusion of lessons (as homework or classwork) to check for individual student mastery. Small quizzes should be administered after every lesson or couple of lessons.

<u>Resources</u>

Content and structure of this course is based on the material as presented by The Physics Classroom.

Science Recommended Accommodations & Modifications for Curriculum Implementation

General Classes Special Education 504 Students <u>ML Students</u> At Risk Students Gifted and Talented

STANDARDS for Learning Targets			
NJSLS Science	Cross curricular	CTE (NJSLS 9) Technology (NJSLS)	
HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.	ELA Standards RI.MF.9–10.6: Analyze, integrate, and evaluate multiple interpretations (e.g., charts, graphs, diagrams, videos) of a single text or texts presented in different formats (visually, quantitatively) as well as in words in order to address a question	CTE Standards 9.3.ST.2: Use technology to acquire, manipulate, analyze and report data. 9.3.ST.6: Demonstrate technical skills needed in a chosen STEM	
	or solve a problem. SL.PI.9–10.4: Present information, findings, and supporting evidence clearly, concisely, and logically. The content,	9.3.ST-ET.1: Use STEM concepts and processes to solve	
	organization, development, and style are appropriate to task, purpose, and audience.	problems involving design and/or production.	
	SL.UM.9–10.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations	 9.3.ST-ET.2: Display and communicate STEM information. 9.3.ST-ET.3: Apply processes and concepts for the use of 	
	L.KL.9–10.2: Apply knowledge of language to make effective	technological tools in STEM	
	choices for meaning, or style, and to comprehend more fully when reading, writing, speaking or listening.	9.3.ST-ET.5: Apply the knowledge learned in STEM to solve problems.	
	Mathematics Standards Standard: Creating Equations A.CED.A.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential	9.3.ST-SM.1: Apply science and mathematics to provide results, answers and algorithms for engineering and technological activities.	
	A.CED.A.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate	9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.	
	axes with labels and scales.	Technology	
	A.CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example,	8.1.12.DA.1: Create interactive data visualizations using software tools to help others better	
	rearrange Ohm's law V = IR to highlight resistance R.	understand real world phenomena, including climate change.	
	Standard: Making Inferences and Justifying Conclusions S.IC.B.6: Evaluate reports based on data (e.g. interrogate study design, data sources, randomization, the way the data are analyzed and displayed, inferences drawn and methods used; identify and explain misleading uses of data; recognize when arguments based on data are flawed).	8.1.12.DA.5 : Create data visualizations from large data sets to summarize, communicate, and support different interpretations of real-world phenomena.	
	Standard: Interpreting Categorical and Quantitative Data		

S.ID.A.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).
S.ID.B.6A: Fit a function to the data (including with the use of technology); use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.
S.ID.B.6B: Informally assess the fit of a function by plotting and analyzing residuals, including with the use of technology.
S.ID.B.6C: Fit a linear function for a scatter plot that suggests a linear association.
S.ID.C.7: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
Standard: Interpreting Functions F.IF.C.7A: Graph linear and quadratic functions and show intercepts, maxima, and minima.
Standard: Linear and Exponential Models F.LE.A.1B: Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
F.LE.A.1C: Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F.LE.A.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
F.LE.B.5: Interpret the parameters in a linear or exponential function in terms of a context.
Standard: Quantities N.Q.A.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays

Sample Measurable Objectives for Lesson Planning

Describe vibrational motion in terms of restoring force and equilibrium position Determine the period, frequency, and amplitude of a vibrating object

Describe the restoring force acting on a pendulum
Describe the energy changes that occur throughout the motion of a pendulum
Identify the factors that affect the period of a pendulum
Describe the restoring force acting on a mass on a spring
Describe the energy changes that occur throughout the motion of a mass on a spring
Identify the factors that affect the period of a mass on a spring
Describe a wave as a disturbance that transfers energy
Categorize waves as longitudinal or transverse
Identify the parts of transverse and longitudinal waves
Define period and frequency
Calculate period and frequency
Relate the amplitude of a wave to the energy it carries
Identify the variables that affect the speed of a wave
Describe the speed of a wave in terms of period, frequency, and wavelength
Calculate the speed of a wave using the wave equation
Describe the behavior of a wave when it encounters a boundary
Define and describe reflection, refraction, and diffraction of waves
Describe constructive and destructive interference of waves
Describe the Doppler Effect
Compare and contrast a traveling wave pattern and a standing wave pattern
Describe how standing waves are formed
Identify the nodes and antinodes in a standing wave
Identify the harmonic of a standing wave pattern
Calculate the wavelength of a standing wave

Unit 8 Summary: Electricity

A student touches an electroscope with his hand at the same time he brings a positively charged rod close to the electroscope without touching. When he removes his hand first and then moves the rod away from the electroscope, the leaves move apart. This phenomenon can be explained through the study of electric charges, forces, and fields. Resistivity and other factors can be used to determine the resistance of an object. Electric potential is a measurement of potential energy per unit of charge. Current is the amount of charge that flows through a material in a given period of time. Resistance, current, and potential difference are related by Ohm's Law and states that potential difference is the product of resistance and current. All resistors in electric circuits are governed by Ohm's Laws. Electric circuits are pathways for electric current to follow and can be wired in series (one path for current), parallel (multiple paths for current), or a combination of the two. Each of these circuits will be analyzed in terms of conservation of energy and charge.

This unit will be broken into three major topics with varying numbers of subtopics. Each lesson will be supplemented with various activities and labs that will be selected by the individual instructor.

- 1. Electricity:
 - a. Electrical Variables
 - b. Electrical Laws
 - c. Electric Circuits

Essential Questions:

How many types of electric charge are there? What are they named? What are the different ways that objects could become charged? What is the definition of the Electric Field? What are voltage, current, and resistance? How is Ohm's Law used to determine current, voltage, or resistance of a resistor? What is the difference between series and parallel circuits?

Vocabulary/Key Terms		
Tier 2 Vocabulary	Tier 3 Vocabulary	
High-frequency words used throughout the unit	Discipline-specific words used throughout the unit	
current, resistance, power, component, resistor, battery, series, parallel	circuit	

Evidence of Learning:

Summative/Performance Assessments (Tests/Projects = 40%)

• Electricity Unit Test

Quizzes (20%)

Labs (30%)

Lab work will involve data collection using traditional data collection methods, sensor collection, video analysis, and/or simulation based material. While many sample labs will be listed here, only those denoted with a \neq will be required.

- Electrical Magic Lab
- Electric Force vs. Distance Lab
- Resistance Lab
- Ohm's Law Lab
- Series Circuits Lab
- Parallel Circuits Lab

Practice (Homework/Classwork = 10%)

Classwork will involve questioning techniques utilizing a variety of strategies. Student learning will be monitored using responder systems, whiteboard responses, and student polling. The usage of Concept Builders will be used for students and instructors to gauge student performance on conceptual tasks. Students will be provided with practice assignments, which will be modified over time to help work with conceptual examples. Other materials that can be used include, but are not limited to:

- Pivot Interactives
- Desmos Graphing Activities
- Physics Interactives
- Physics Aviary Tasks
- PhET Simulations

Formative Assessments:

Student progress will be assessed on a daily basis through *Objective Checkpoint* questions embedded in the lesson presentations. Concept Builders will be used at the conclusion of lessons (as homework or classwork) to check for individual student mastery. Small quizzes should be administered after every lesson or couple of lessons.

Resources

Content and structure of this course is based on the material as presented by The Physics Classroom and PSI Electric Charge and Force, Electric Field and Potential, and Current and Circuits Chapters.

Science Recommended Accommodations & Modifications for Curriculum Implementation

General Classes Special Education 504 Students ML Students At Risk Students

Gifted and Talented

2	0	2.	Л
4	U	2	1

STANDARDS for Learning Targets			
NJSLS Science	Cross curricular	CTE (NJSLS 9) Technology (NJSLS)	
HS-PS2-5: Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.	ELA Standards RI.MF.9-10.6: Analyze, integrate, and evaluate multiple interpretations (e.g., charts, graphs, diagrams, videos) of a single text or texts presented in different formats (visually, quantitatively) as well as in words in order to address a question or solve a problem.	CTE Standards 9.3.ST.2: Use technology to acquire, manipulate, analyze and report data. 9.3.ST.6: Demonstrate technical skills needed in a chosen STEM field.	
	SL.PI.9-10.4: Present information, findings, and supporting evidence clearly, concisely, and logically. The content, organization, development, and style are appropriate to task, purpose, and audience	9.3.ST-ET.1: Use STEM concepts and processes to solve problems involving design and/or production.	
	SL.UM.9–10.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance findings, reasoning, and evidence and	9.3.ST-ET.2: Display and communicate STEM information.9.3.ST-ET.3: Apply processes and concepts for the use of technological tools in STEM	
	to add interest L.KL.9-10.2: Apply knowledge of language to make effective choices for meaning, or style, and to comprehend more fully	9.3.ST-ET.5: Apply the knowledge learned in STEM to solve problems.	
	when reading, writing, speaking or listening. Mathematics Standards	9.3.ST-SM.1: Apply science and mathematics to provide results, answers and algorithms for engineering and technological activities.	
	Standard: Creating Equations A.CED.A.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions	9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.	
	A.CED.A.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Technology 8.1.12.DA.1: Create interactive data visualizations using software tools to help others better understand real world phenomena, including climate change.	
	A.CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	8.1.12.DA.5 : Create data visualizations from large data sets to summarize, communicate, and	
	Standard: Making Inferences and Justifying Conclusions S.IC.B.6: Evaluate reports based on data (e.g. interrogate study design, data sources, randomization, the way the data are analyzed and displayed, inferences drawn and methods used; identify and explain misleading uses of data; recognize when arguments based on data are flawed).	support different interpretations of real world prehomend.	
	Standard: Interpreting Categorical and Ougntitative Data		

S.ID.A.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).
S.ID.B.6A: Fit a function to the data (including with the use of technology); use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.
S.ID.B.6B: Informally assess the fit of a function by plotting and analyzing residuals, including with the use of technology.
S.ID.B.6C: Fit a linear function for a scatter plot that suggests a linear association.
S.ID.C.7 : Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
Standard: Interpreting Functions F.IF.C.7A: Graph linear and quadratic functions and show intercepts, maxima, and minima.
Standard: Linear and Exponential Models F.LE.A.1B: Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
F.LE.A.1C: Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F.LE.A.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
F.LE.B.5: Interpret the parameters in a linear or exponential function in terms of a context.
Standard: Quantities N.Q.A.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays

Sample Measurable Objectives for Lesson Planning

Describe electricity and electrical charge

Identify the 3 main methods of charging an object

Draw electric field lines

Calculate resistance, voltage, and current using Ohm's Law

Apply Ohm's Law to series circuits

Apply Ohm's Law to parallel circuits